LinPAC

Linear Projectile Aerodynamic Coefficients

Prediction of Aerodynamic Coefficients of Projectiles with Circular Body Configurations:

- Body alone (spin stabilized)
- Fin stabilized projectile
- Up to three wing sections guided projectile

- MethodCombined semi-empirical and potential, based on
published data collected from western and eastern
countries.
- **Capability** Calculation of the derivatives of aerodynamics coefficients of the classical projectiles, rockets and missiles, with one, two or three wing sections and body alone for small angles of attack.
- PurposeQuick estimation of aerodynamics coefficients of
projectiles, preliminary aerodynamic design, estimation
of loads on projectiles and their components.
- **Uncertainty** Depends on configuration, up to 10 % for typical aerodynamic shapes.

Ranges of basic input quantities

- □ Mach number: [0.1÷5.0],
- **Body of revolution with maximum three different diameter**,
- Body nose shape: cone, parabola, ogive, ellipse, and combination with spherical and truncated tip,
- □ Boat-tail shape: cone, parabola,
- Maximum three wing sections ("++", "+x" and "x+" combinations),
- □ Wing shape: trapezoidal flat, trapezoidal wraparound,
- □ Number of fins: flat, cruciform, six and up to twelve fins,
- Wing aspect ratio [0.1,20], taper ratio [0,1], thickness ratio [0.01÷0.5],
- Wing airfoil shape: double wedge, modified double wedge, double sinusoid, flat plate,
- □ Ailerons, flaps on one wing section only ,
- □ Symmetric and differential deflection of fins (all sections).

Main Menu

Main Menu File Tools Help	- 🗆 X
Input Data Input file: Test model, Elerons, Flaps.txt	Configuration Sketch
General Data ☑ Mach & Reynolds Number ☑ B o d y ☑	
Number of wing sections 3 Wing Sections First Wing Section	Save Data
Configuration: First - Second Wing Section	Save Input Data Save Input Data As
Second Wing Section 🔽	Run
• ++ or ×× ○ +× ○ ×+ Third Wing Section	Results Summary Basic AC SixDoF AC
Ailerons No © Yes No © Yes	CA Comp. CNa Comp. Cmq Comp.
Edit Data 🗵	Interf. Coeff. Restart Run time msg.
Correction Coefficients 🗵 Load Parameters 🗵	EXIT

Body Data

🕲 Body	0.6985 m Nose length	0.374 m Diameter at	nose base 0.155 m	- 🗆	×
Nose Shape Basic Shapes Cone Cone Cogive Ellipsoid Flat nose Like mortar mine	Ogive Shapes ○ Sharp ogive ○ Blunted ogive/mepla ⓒ Ogive + trunc. cone	it	Length of trunc. cone 0.095 m Diameter of cone base 0.0613 m Diameter of meplat 0.0136 m Ogive nose secant angle 4.605 deg		
ି Body Contraction ି No ି Yes		−Body Flare ଙ No ି Yes	Configuration Sketch		
Boat-Tail Length 0.0686 m Initial diameter 0.155 m Base diameter 0.1427 m	Shape Cone Parabola, ogive	Rotating Band (0.2d width) No reference Yes Position 0.59 m Diameter 0.16 m	Ogive Nose Calculation Cancel OK		

ing Section				- 0
Wing/Fin Planform Geometry —				Υ.
Distance of wing le	ading edge to the body apex	265.5 cm	Number of fins 4	
	Fin closing angle	40 deg		
Fin curva	ture radius, 999 for flat fins	<mark>6</mark> cm		
	Semi-span of the wing alone	6.8 cm	Configuration Sketch	
Body diameter	at the place of the hinge line	11 cm	θ θ	-
Distance from wing l	eading edge to the hinge line	0 cm		
Body con	e semi-angle at the hinge line	0 deg		
	Aspect ratio	0.7381 -	(\checkmark
	Leading edge sweep angle	25 deg		
	Taper ratio	0.8425 -		
Airfoil	Apparthickness to shord ratio	0.0172	Wing Geometry Cal	culation
Padius of airfail loadi		0.0173 -		
Radius of arroll leading	ig edge, 999 - hat lead. edge	0.05 cm		
Mean thickness at the trailing edge place 0.1 cm		Two-segment Wing C	alculation	
Mean Airfoil Shape				
© Double wedge				
Modified dbl. wedge	Chord length 17.7	7 cm		
 Biconvex 	Straight part length 17	7 cm		
C Flat plate				
			Cancel	ОК

First Wing Section

Input Data	Configuration Sketch
Semi span (b/2) 54 cm	
Root chord (cr) 78 cm	
Tip chord (ct) 55 cm	
Leading edge sweep angle (Λο) 30 deg	
Calculate	
Calculated Data	
Wing area 7182.00000 cm ²	
Aspect ratio 1.6241 -	
Taper ratio 0.7051 -	
Trailing edge sweep angle 8.6083 deg	
Mid edge sweep angle 20.0200 deg	
Mean Aerodynamic Wing and Chord (MAC)	
Chord (MAC) 67.1629 cm	
Span 106.9340 cm	
Chord-wise position of MAC 14.6886 cm	
Span-wise position of MAC 25.4436 cm	Use Calc. Data EXIT

Wing Parameters Calculation

Ailerons	– 🗆 X
Aileron Planform Geometry	
Number of wings (pair of consoles) with aileron	1 -
Semi-span of the ailerone alone 0.3	C On the first section
Aspect ratio 5 257	© On the scnd. section
	C On the third section
Leading edge sweep angle	8 deg
laper ratio 0.4	<u>4</u> -
Body diameter at the place of the ailerone hinge line 0.375	5 m
Body cone semi-angle at the hinge line 0	0 deg Configuration Sketch
Distance from aileron leading edge to the hinge line 0.05	5 m
Distance from the wing leading edge 0.862	2 m
Distance from wing root chord to the aileron inside chord 0	0 m
⊂ Airfoil	
Mean thickness to chord ratio 0.08 -	$AR = \frac{b}{S_a}$
Mean Airfoil Shape	
Ouble wedge	
O Modified dbl. wedge	
C Biconvex	
○ Flat plate	
	Cancel OK
Ailerons Geometry Calculation	

Results

Files with calculated aerodynamic derivatives

Sketch of projectile and diagrams of basic aerodynamic derivatives vs. Mach number

Aerodynamic Scheme of Projectile

SAM Model

Demo Example

23. 4.2009.

CA0 – Derivative

CNa – Derivative

Cma – Derivative

CNq – Derivative

Xcp / Iref

Output Files

Basic AC	SixDoF AC
CNa Comp.	Cmq Comp.
Loads	Aileron & Flaps
Restart	Run time msg.
	Basic AC CNa Comp. Loads Restart

Output Files - Explanation

The following output files are formed upon the running the LinPAC program.

File Name		Short Description
Summary.dat	-	File contains input data and calculated aerodynamic coefficients.
Basic_AC.dat	-	File contains main aerodynamics coefficients.
SixDOF_AC.dat	-	File contains aerodynamics coefficients in the format to be input file for the program Six degree of freedom motion calculation.
CA_Comp.dat	-	File contains components of aerodynamics coefficients of axial force.
CNa_Comp .dat	-	File contains derivatives of aerodynamics coefficients of normal force for projectile components.
Cmq_Comp.dat	-	File contains damping derivatives coefficients of projectile and its components.
Load_AC.dat	-	File contains coefficients of loads on projectile components.
Loads.dat	-	File contains forces and moments on the projectile (loads), and forces and moments on all projectile components.
Flaps.dat	-	File contains aerodynamic coefficients of ailerons and flaps.
InterfCoeff.dat	-	File contains interference coefficients according the slender body theory, coefficient of wing-tail vortex interference, and down wash angles.
Restart.dat	-	File contains input data to start (restart) program.
Messages.dat	-	File contains program run time messages.

Comparison with Experiments

On the next diagrams comparison of the calculation with experiment is shown for the following projectiles/models:

- 1. AGARD-B test model,
- 2. SPARROW III missile
- 3. Army-Navy BASIC FINNER test model

In calculation Reynolds number is adjusted to match the experimental values.

Comparison with Experiments

For the AGARD-B model data were taken from:

Piland, R.: "The zero-lift drag of a 60 degrees delta-wing-body combination (AGARD model 2) obtained from free-flight tests between Mach numbers of 0.8 and 1.7", NACA-TN-3081, 1954.

Bromm, F. Jr.: "Investigation of lift, drag, and pitching moment of a 60deg delta-wing-body combination (AGARD Calibration Model B) in the Langley 9-inch Supersonic Tunnel", NASA TN 3300, 1972.

Damljanović, D., Vitić, A., Vuković, Dj.: Testing of AGARD-B Calibration Model in the T-38 Trisonic Wind Tunnel, Scientific-Technical Review,Vol.LVI,No.2,2006.

Sketch of AGARD-B Test model

For the Sparrow model data were taken from:

Monta, W. J.: "Supersonic aerodynamic characteristics of an air-toair missile configuration with cruciform wings and in-line tail controls", NASA-TM-X-2666, 1972.

Monta, W. J.: "Supersonic Aerodynamic Characteristics of a Sparrow III Type Missile Model With Wing Controls and Comparison With Existing Tail-Control Results", NASA, TP 1078, Nov. 1977.

"Tail Control Sparrow Wind Tunnel Test at NASA/Ames Research Center", Raytheon Co., Raytheon Rept. BR-9105, Final Rept., Bedford, MA, April 1976.

Sketch of Sparrow III missile

Notation on diagrams: Subscript "W" – "Wing" Subscript "T" – "Tail"

Sparrow III – Body alone AC

- Drag components of Sparrow III body alone with boattail $d_b/d = 0.85$ and $l_{bt}/d = 0.54$.
- Data are printed in output file CA_comp.dat
- *Re*=0.2*10⁶ = const to mach wind tunnel data.

For the Basic finner model data were taken from:

MacAllister, L. C.: "The Aerodynamic Properties of a Simple Non-Rolling Finned Cone-Cylinder Configuration Between Mach Number 1.0 and 2.5", BRL Report No. 934, May 1955.

Shantz, I. and Graves, R.T.: "Dynamic and Static Stability Measurements of the Basic Finner at Supersonic Speeds", NAVORD Report 4516, 1960.

Regan, F. J.: "Roll Damping Moment Measurements for the Basic Finner at Subsonic and Supersonic Speeds," NAVORD Rept. 6652, June 1964.

Murthy, H.S.: "Subsonic and Transonic Roll Damping Measure-ments on Basic Finner" AIAA-82-4042. Journal of Space-craft and Rockets, VOL. 19, NO. 1, Jan.-Feb. 1982., pp. 86-87.

Sketch of the Army-Navy Basic Finner test model

Dimensions in calibers, d = 19.05mm

